QuickField 6.3 SP1 analysis capabilities

Vladimir Podnos, Director of Marketing and Support, Tera Analysis Ltd.

QuickField features overview

Alexander Lyubimtsev Support Engineer Tera Analysis Ltd.

Live presentation: QuickField simulation examples

QuickField features overview

Vladimir Podnos, Director of Marketing and Support, Tera Analysis Ltd.

QuickField is FEA for EM, heat transfer, stress and mutliphysics

QuickField Analysis Options

Magnetic analysis suite		
Magnetic Problems	Magnetostatics	
	AC Magnetics	
	Transient Magnetic	
Electric analysis suite		
Electric Problems	Electrostatics (2D,3D) and DC Conduction (2D,3D)	
	AC Conduction	
	Transient Electric field	
Thermostructural analysis suite		
Thermal and mechanical problems	Steady-State Heat transfer (2D,3D)	
	Transient Heat transfer	
	Stress analysis	

QuickField solvers

Solution time for various sizes of finite element mesh

More....

🚑 1_9.mod

Serial calculations Tolerance Analysis Optimization

🔏 1.mod

Tel

QuickField workshop in Ann Arbor, October 31 2011

- 🗆 ×

Open object interface

QuickField Analysis Options

Magnetic analysis suite		
Magnetic Problems	Magnetostatics	
	AC Magnetics	
	Transient Magnetic	
Electric analysis suite		
Electric Problems	Electrostatics (2D,3D) and DC Conduction (2D,3D)	
	AC Conduction	
	Transient Electric field	
Thermostructural analysis suite		
Thermal and mechanical problems	Steady-State Heat transfer (2D,3D)	
	Transient Heat transfer	
	Stress analysis	

DC Magnetics

AC Magnetics

Ł

Problem Properties - HMagn2
General Links
Problem Type: AC Magnetics
Model Class Frequency Coordinate System Plane-parallel f = 100 Hz Cartesian Image: Coordinate System
L ₂ = 1000 mm Precision
Files
Data: Hmagn2.dhe
Library Data:
Circuit:
Location: C:\Users\Public\Documents\QuickField 6.3 Examples
OK Cancel Help
filter load1
secondary
secondary2
0.0001 L

Transient magnetics

<u>File Edit Yiew Tools Window Help</u>

\delta QuickField

Electrostatics

AC, DC and Transient electric

Heat transfer

Stress analysis

So many field simulation tools on a market. QuickField is not just another one...

Common with major modern field simulation packages:

- FEM based
- Graphical User Interface
- Fully automated
- Works in Windows
 environment
 - Compatible with CADs
- Large customer base
- Distributed and supported worldwide

Different from most modern field simulation packages:

- Does not require training or mathematical background Extremely fast Open Object architecture
 - and COM-compatible
 - Flexible licensing options (freeware and commercial editions)

QuickField Difference

Live presentation: QuickField simulation examples

Alexander Lyubimtsev Support Engineer Tera Analysis Ltd.

High voltage cable ampacity

<u>2016 IEEE International</u> Comparison of finite element analysis to IEC-60287 for predicting underground cable ampacity

High voltage cable ampacity AC Magnetic simulation

Current density distribution is not uniform

High voltage cable ampacity Heat transfer simulation

RG220 cable insulation electric stress

Problem specification:

Voltage HV = 35 kV

Relative permittivity of PE insulation $\epsilon = 2.3$

<u>Task:</u>

Find optimal *d* to minimize electric field stress E[V/m]

https://quickfield.com/advanced/rg220_coax_cable.htm

RG220 cable insulation electric stress

۲

